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ABSTRACT
Numerous domains ranging from distributed data acquisi-
tion to knowledge reuse need to solve the cluster ensemble
problem of combining multiple clusterings into a single uni-
fied clustering. Unfortunately current non-agent-based clus-
ter combining methods do not work in a distributed envi-
ronment, are not robust to corrupted clusterings and require
centralized access to all original clusterings. Overcoming
these issues will allow cluster ensembles to be used in fun-
damentally distributed and failure-prone domains such as
data acquisition from satellite constellations, in addition to
domains demanding confidentiality such as combining clus-
terings of user profiles. This paper proposes an efficient, dis-
tributed, agent-based clustering ensemble method that ad-
dresses these issues. In this approach each agent is assigned
a small subset of the data and votes on which final cluster
its data points should belong to. The final clustering is then
evaluated by a global utility, computed in a distributed way.
This clustering is also evaluated using an agent-specific util-
ity that is shown to be easier for the agents to maximize.
Results show that agents using the agent-specific utility can
achieve better performance than traditional non-agent based
methods and are effective even when up to 50% of the agents
fail.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance
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1. INTRODUCTION
Clustering is a difficult problem in numerous fields in-

cluding machine learning, multi-agent systems, data man-
agement and bioinformatics [14, 20, 11]. The central con-
cept of clustering is that data points should be partitioned
into separate clusters so that data points within a cluster
are “close” to each other, while data points from different
clusters are “far” from each other. A set of clusters with
these properties is a clustering. To goal of the clustering
problem is to find good clusterings. While the clustering
problem is typically an NP-complete optimization problem,
there are numerous heuristic clustering algorithms including
k-means, expectation-maximization and Metis [13, 10, 2, 8].
Note that even though clustering is often used within multi-
agent systems (e.g. to group similar agents), agents are not
typically used to solve the clustering problem itself. This is
as much due to the traditional view of a cluster as a passive
label, rather than and active agent, as to the difficulty in
decoupling the interactions among the agents representing
the labels.

This paper focuses on using agents for an important sub-
set of the clustering problem known as the cluster ensemble
problem (Figure 1) [16]. In the cluster ensemble problem
one needs to combine multiple clusterings, formed from dif-
ferent aspects of the same data set, into a single unified
clustering. Cluster ensembles are particularly useful when
all of the original data points are not available to create a
clustering, but separate clusterings of the data still exist.
This situation occurs:

1. When some of the data points come from proprietary
sources, where the data owners are willing to reveal
their clustering of the data, but not the data itself.

2. When the original data points are simply lost, or have
been thrown away, but the much smaller summery
cluster data is saved.

3. When all of the original data is available, but it may
be too big to store in one site of computation. In this
case, it may be desirable to make separate clusterings
of different parts of the data and combine them later.

4. When we want to inject prior knowledge into learning
systems or re-use information since new clusterings can
be combined with older clusterings without needed to
know all the information used in the previous cluster-
ings or how they were derived.

Currently the best algorithms for cluster ensembles are
graph-theoretic methods [15]. These methods treat the clus-



Figure 1: Cluster Ensembles. Shown on left are
three different clusterings for eight data points. The
goal of the cluster ensemble is to create a unified
clustering (shown on right) that preserves the most
information from the original clusterings.

ter ensemble problem as a global static problem, examining
the entire data set and producing a single result. While these
methods have shown to have good results on certain infor-
mation theoretic measures, they tend to be inflexible [16].
The graph-based methods require the cluster combining to
happen on a single node of computation. This requires all
the data to be centrally available, creating a single point of
failure. This centralization makes them inappropriate for
domains that are inherently distributed, and have a poten-
tial for high component failure such as in space-based oper-
ations.

Instead of graph-based cluster ensemble methods, this pa-
per proposes using learning agents to solve the cluster en-
semble problem. In this approach each agent contributes to
the final clustering and uses reinforcement learning to learn
to maximize a utility function based on the clustering. Un-
like graph-based methods, the multi-agent approach treats
the cluster-ensember problem as a dynamic system, where
agents continually attempt to create a unified clustering that
maximizes a utility. This dynamic agent-based approach is
more flexible and robust in the following ways:

• Agents are robust against noisy data sources.

• Agents naturally adapt to loss of data sources.

• Computation is distributed.

• There is no single point of failure, so performance
gracefully degrades with the number of failures.

• Computation can be stopped at any time when per-
formance is adequate.

• Data sources do not have to be revealed.

These advantages allow multi-agent cluster ensembles to be
used more effectively in more domains than their non-agent-
based counterparts.

Despite these advantages, multi-agent systems have not
been used in the cluster ensemble problem due to coupling
between the cluster assignments. The utility the agents at-
tempt to maximize is highly non-linear, limiting the inde-
pendence assumptions that can be made. This non-linearity
prevents many multi-agent techniques from being applica-
ble. In addition if an agent attempts to maximize the utility
directly, it faces a difficult signal-to-noise problem in that it
does not know the effect of its actions on the utility, among
the effects of the actions of all the other agents. To ad-
dress this issue, this paper shows how agents can instead use
agent-specific utilities that are much easier to maximize, yet
are still aligned with the original utility.

In Section 2, this paper gives a formal description of the
cluster ensemble problem as well as a brief overview of a
graph-based and simple greedy solutions to the cluster en-
semble problem. In Section 3 this paper presents an agent-
based approach. Finally in Section 4 the paper shows results
for the performance of agent-based cluster ensemble meth-
ods, and how they are robust against agent failure.

2. CLUSTER ENSEMBLE PROBLEM
In clustering problems a set of data points are grouped

into clusters, so that data points in the same cluster are
“closer” to each other than data points from different clus-
ters. The closeness between data points is typically mea-
sured with a domain dependent distance metric. This met-
ric is influenced by the type of data, the goal of the cluster-
ing and even the “scale” of the clustering depending on the
amount of clusters desired [17, 16, 4]. Given a distance met-
ric, a “soft-clustering” can be performed where data points
belong to different clusters with varying probability, or hard
clustering where each data point is part of only one clus-
ter [6]. This paper will focus only on hard-clustering. This
type of clustering problem is equivalent to creating a non-
overlapping partition of the data. In this paper we refer to
a particular partition as a clustering. In general there can
be many different clustering for the same data, depending
on the clustering algorithm used [12, 5, 8]. In addition there
can be sets of related clusterings that are formed with over-
lapping subsets of the data [16]. The goal of the cluster
ensemble problem is to create a single clustering that best
characterizes a set of clustering, without using the original
data points used to generate the clusterings.

To formalize the clustering ensemble problem, we need
a way to compare two clusterings. In this paper, this is
done through an information theoretic measure previously
used in the clustering community called normalized mutual
information (NMI) [16]. This measure is based on the sizes
of the clusters within the clusterings (a formal justification
for this is presented in [15]). To compute this measure we
fist define a clustering X, where each cluster xi ∈ X is a
set of data points. We now define the mutual information
between clusterings X and Y as:

I(X, Y ) =
X
x∈X

X
y∈Y

|x ∩ y|
n

log2

„
n|x ∩ y|
|x||y|

«
(1)

where there are n data points and | · | and ∩ are the set
cardinality and intersection operators respectively. The in-



tersection operation x ∩ y returns the data points that are
common to both clusters x and y. Next we define the en-
tropy of a clustering, X, as:

H(X) = −
X
x∈X

|x|
n

log2

„
|x|
n

«
(2)

Now we can define the normalized mutual information (NMI)
between two clusters, X and Y as:

NMI(X, Y ) =
I(X, Y )p

H(X)H(Y )
(3)

which has the desirable property of being bounded by [0, 1]
and having NMI(X, X) = 1.

The normalized mutual information between two clusters
measures how much information they have in common. If
two clusterings are similar they will have an NMI close to
one. If two clusterings are completely different then they
have an NMI of zero. In this case knowing one clustering
would not help one predict the clusters within the second
clustering. If we had a “true” clustering of the data we
would want our ensemble clustering to have as high as pos-
sible NMI with respect to this true clustering. However,
typically all we have to compare our ensemble clustering
with is the original clusterings used to create the ensemble.
In this case our goal is to create an ensemble clustering that
shares as much information as possible with the clusterings
it was created from. This can be measured by averaging the
normalized between the original clusterings and the ensem-
ble. Formally we define the ANMI between a clustering X
and a set of clusterings Y as:

ANMI(Y , X) =
1

|Y |

X
Y ∈Y

NMI(X, Y ) . (4)

When an ensemble clustering X has more information in
common with the original clusterings Y , ANMI(Y , X) will
have a higher value. Therefore the goal of the agents is to
find the clustering, X∗, that maximizes the ANMI between
X∗ and the set of available clusterings Y .

2.1 Graph-based Approaches
The graph-based approaches to the cluster ensemble prob-

lem involve representing the data points as nodes in a hy-
pergraph, and the clusters as undirected hyperedges of the
hypergraph. This paper will compare cluster ensemble per-
formance with three of these algorithms, which are described
in detail in [16]. The first algorithm called CSPA (Cluster-
based Similarity Partitioning Algorithm) provides moderate
performance, but requires significant computation. CSPA
works by creating a similarity measure between data points.
Within a clustering, all data points in the same cluster have
a similarity of 1, and data points from different clusters have
a similarity of 0. If the similarities between data points are
averaged over different clusterings, a new single clustering
can be made with a similarity based clustering algorithm,
such as METIS [8].

The second clustering algorithm is called HGPA (Hyper-
Graph Partitioning Algorithm) and is simpler to compute
than CSPA. This method creates the final combined clus-
tering for the ensemble by using HMETIS [9] to perform
hypergraph partitioning on the hypergraph that represents
the clusterings. The objective of this method is to create
clusters that break the least number of hyperedges. The

final method, called MCLA (Meta-CLustering Algorithm),
provides better performance than HPGA and retains its low
computational complexity. This algorithm works by collaps-
ing a group of related hyperedges into a single hyperedge.
This can be seen as clustering clusters.

2.2 Simple Greedy Optimization
Simple greedy optimization approaches have been applied

to the cluster ensemble problem in [16]. In this method,
one starts with a single representative clustering, X, which
is usually the clustering that has the highest ANMI with
respect to all the other clusterings:

X = argmaxX′∈Y ANMI(Y \X ′, X ′) (5)

where Y is the set of clusterings, and \ is the set difference
operator. For each data point, a new clustering is created
from the previous clustering by moving the data point to a
new cluster at random. If this new clustering has a higher
ANMI than the previous one, then it is preserved, otherwise
it is thrown away. The algorithm is repeated for each data
point. When it has gone through all the data points, the
algorithm stops if all of the new clusterings where thrown
away. Otherwise it repeats through all the data points. This
algorithm can be seen as a form of serial simulated annealing
with zero exploration or as a Stackelberg game [7]. Unlike
the graph-based methods, this algorithm is dynamic as it
continually tries to maximize utility. However, this algo-
rithm has a number of difficulties. Since the exploration
is zero, the system will only reach a local maximum. Also
since for each loop, the ANMI has to be computed for every
data point, the computationally burdensome when there are
many data points.

3. AGENT-BASED APPROACH
Similar to the greedy optimization approach, the agent-

based approach treats the cluster ensemble problem as a dy-
namic optimization problem, with the agents striving to cre-
ate a final combined clustering with the highest utility. How-
ever, the agent-based approach requires significantly less
computation and is naturally distributed. In this approach
agents are assigned a set of data points and vote on which
cluster in the final clustering the data points should belong
two. Through reinforcement learning, the agents learn how
to vote in a way that leads to the best final clustering.

3.1 Assigning Agents and Voting
In this paper, the cluster ensemble problem is approached

by assigning one or more agents to each cluster in the orig-
inal set of clusterings. If m agents are assigned to each
cluster, then the multi-agent sytem for r clusterings with
k clusters each would have mrk agents. The action of an
agent is to vote on the cluster in the combined clustering,
to which the data points it is responsible should belong. A
data point will then belong to final cluster that received the
most votes from agents that were responsible for the cluster
containing the data point. This process is shown in Fig-
ure 2. The global utility of the system is the ANMI of the
combined clustering with respect to the original clusterings.
Agents can then try to maximize the ANMI, by using their
private utilities to help them choose the best actions. In
this example, the top two points are in the same clustering
in two of the three clusterings (agents 1 and 4). Similarly,



the second and third data points are in the same clustering
in two of three clusterings (agents 1 and 8). In the final
clustering, all three data points belong to the same cluster,
as this clustering minimizes the mutual information between
the original clusterings.

Agent 2

Agent 1

Agent 3

Agent 4

Agent 6

Agent 7

Agent 8

V1, V4

V1, V4, V8

V1, V6, V9

V2, V6, V9

V3, V7

V1, V5, V8

V2, V6, V8

V2, V7, V8

Agent 9

Agent 5

Clustering 1 Clustering 2 Clustering 3
Final

ClusteringVotes

Figure 2: Agent-Based Cluster Ensembles. An
agent is assigned to a cluster in each clustering.
Agents then vote on the final cluster to which the
data points within their current cluster belong.

Formally the votes by the agents for a combined clustering
Z can be represented by a two dimensional array of sets
indexed by agents and clusters. If agent i chooses cluster
z ∈ Z, then Vi,z equals the set of data points in agent i’s
assigned cluster. If agent i did not choose z then Vi,z equals
the empty set. The number of votes for data point p to be
put in cluster z can be formulated as follows:

Np,z =
X

i

Ip∈Vi,z (6)

where I is an indicator function. The assignments of data
points to a cluster in the combined clustering can now be
expressed as:

z = {p|Np,z = maxz′Np,z′} (7)

3.2 Global Utility
The global utility that the agents ultimately try to maxi-

mize is the ANMI between Z and the initial set of clusterings
Y :

G(Y , V ) = ANMI(Y , Z(V )) . (8)

Note that the global utility can be computed in a distributed
way when the votes V are broadcasts to all agents. Each
agent can compute the final clustering Z(V ) and compute
its own normalized mutual information NMI(Y, Z(V)). The
NMIs can then be broadcasts and all the agents can compute
ANMI and therefore G on their own. While this process re-
quires a fair amount of communication, it is usually consid-
erably less than broadcasting the entire data set, depending
on the size of the clusters. While an agent can compute

the global utility, it is difficult for an agent to maximize the
global utility directly since this utility is a function of the
actions of all of the other agents. If an agent takes an action
and the global utility increases, the agent does not know
if the increase is due to its action or the actions of other
agents. As a consequence, when there are many agents, it
will take a large number of learning steps for an agent to
discern the effects of its actions from the actions of all the
other agents.

Note that while the computation of G ultimately uses in-
formation derived from all of the data points, these data
points are never assembled into a central data set. Instead
the computation of G involves the agents broadcasting what
they believe the final clustering should be, not what their
current clusterings are. In this distributed framework the
original clusterings do not have to be revealed. This decen-
tralized computation allows the agent-based approach to be
used in domains where the owners of individual data sources
do not want their data set to be made fully available to the
other data owners.

3.3 Agent-Specific Utility
Instead of maximizing the global utility directly, an agent

can learn more quickly if it maximizes an agent-specific “pri-
vate” utility that is more influenced by its own actions than
the actions of all the other agents. We call this relative in-
fluence an agent has on its utility, the “learnability” of the
utility [18]. Learnability for a private utility gi for agent i
can be informally defined as ratio of agent i’s influence on
gi to all other agents’ influence on gi. Generally if a utility
is more learnable for an agent, the faster an agent will be
able to maximize it. However, having all the agents being
able to maximize their private utilities is not useful if this
does lead to the maximization of the global utility. For the
maximization of private utilities to lead to the maximiza-
tion of the global utilities, each private utility should be
“factored.” A private utility is factored when any action an
agent takes to increase its private utility also increases the
global utility [18, 21].

A utility that has been shown to have high learnability
while being factored is the difference utility, defined as:

Di(z) = G(z) − G(z−i); (9)

where z are the actions of all the agents and z−i are the ac-
tions of all the agents other than agent i. The second term of
the difference utility is a counterfactual, computing the value
of the system without agent i. Subtracting this counterfac-
tual from the global utility therefore computes an agent’s
contribution to the global utility. This utility is factored
since the second term is not a function of the agent’s ac-
tions, therefore it can only influence the utility by changing
the value of the first term, the global utility. Furthermore,
this utility usually has far better learnability than does G(z)
because the second term of Di removes a lot of the effect of
other agents (i.e., noise) from agent i’s utility [18]. This util-
ity has proven effective in many multi-agent system domains
including network routing, rover control, job scheduling and
congestion games [1, 19, 18].

Using the global utility defined in 8 we can define the
difference utility for the cluster ensemble problem as:

Di(Y , V ) = ANMI(Y , Z(V )) − ANMI(Y , Z(V ′)) (10)

where V ′ is the same as V , except that all of the elements



of V ′ that are indexed by i are equal to the empty set.
Since this utility is factored, agents maximizing Di(Y , V )
will tend to maximize G(Y , V ), though they can learn more
quickly since each agent has more influence over its own dif-
ference utility than over the global utility. Note that when
an agent’s vote does not influence the final clustering Z(V’)
the difference utility does not have to be computed since its
value is zero. In large systems, this case will occur often. If
an agent’s vote is a deciding vote, then all the agents will
have to compute and broadcasts their NMIs for the coun-
terfactual Z(V ′). In the worst case when all the votes are
deciding votes, the amount of computation grows linearly
with the number of agents. However, this system is still
distributed and an agent can simply not average in NMIs
from other agents that fail to respond. This distribution
is critical to robustness as agents can still try to maximize
their utilities even when some of the agents are not working
properly.

4. RESULTS
The performance of the multi-agent approach to cluster

ensembles relative to other methods was tested with three
data sets. The first data set was artificial, while the other
two came from real-world problems. These data sets showed
different aspects of the cluster ensemble problem. In the first
data set, the “true clustering” was known since it was arti-
ficially generated. The second data set involved clustering
images of hand-written images, where the true number of
clusters was known, but the correct clustering was subject
to interpretation. The final data set involved groupings in
the Yahoo! web site, where both the correct number of clus-
ters and the correct clustering was subject to interpretation.
The experiments showed that the multi-agent approach of-
ten achieved superior performance to the best existing cen-
tralized cluster ensemble algorithms, while being able to re-
cover from a number of types of agent failures.

All agents learned with a simple single-time-step reinforce-
ment learner. This learner was equivalent to an Q-learner
with infinite reward discounting (γ = 0) so that only the
immediate reward was processed. At every time step, each
agent would choose one of k clusters based on its estimates
of the utility for that choice. These estimates were stored
in a utility table of size k. This process was done in an
ε-greedy fashion (with ε = 0.005) where the highest valued
cluster would be chosen with probability 1 − ε and a ran-
dom cluster would be chosen with probability ε. After all
the agents chose their cluster, each agent would compute
their private utility and use it as the reward to update their
reinforcement learner.

4.1 Artificial Data
In the first experiment, four hundred data points where

randomly placed into ten clusters to form an initial cluster-
ing. From this initial clustering, eight variants were created.
Each variant was made by first duplicating the original clus-
tering and then adding random noise by moving a random
subset of the data points to new clusters (for each data point
in the subset, the cluster it was moved to was chosen inde-
pendently over a uniform distribution over all the clusters).
The amount of random noise was specified by B, the frac-
tion of all the data points contained in the subset. These
noisy variant clusterings were used as the ensemble cluster-
ings and experiments were performed with B ranging from
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Figure 3: Results of Ensemble Methods with Arti-
ficial Data. Eight clusterings are created by adding
40% noise to the original cluster labels. The ensem-
ble tries to recover the original labels from the eight
clusterings. The decentralized algorithm using the
difference utility performs as well as the best graph-
based algorithm, which requires centralization.

0.0 to 1.0. The performance of the algorithms were deter-
mined by the NMI between the clustering produced by the
algorithm and the initial clustering. Since this is an artifi-
cial data set we have “ground truth” about what the true
clusterings should be. A better cluster ensemble algorithm
should produce a clustering as close to possible to the initial
clustering in which the eight ensemble clusterings were de-
rived. Figure 3 shows the results with B = 0.4 for agents us-
ing Di or G as their utility along with results obtained from
the graph-based methods and the simple greedy method.

The results show that the agent-based method using the
difference utility performed as well as the best graph-based
method, MCLA and considerable better than the lowest
performing graph-based method, HGPA. In noisy domains
HGPA had particular poor performance as compared to
MCLA because MCLA could reduce noise by collapsing sim-
ilar edges. In addition to performing as well as the best
graph-based methods, the agent-based method using the
difference utility performed about the same as the simple
greedy method. However this performance was achieved
with much less computation. The greedy method was re-
ported to take an hour on a 1Ghz PC [16]. The agent-based
method took only 45 seconds on a similar computer. In con-
trast to agents using the difference utility, agents using the
global utility performed very poorly. This poor performance
can be attribute to the large number of agents in this prob-
lem (eighty). When an agent choose a cluster and the value
of the global utility changed, the agent did not know whether
the change was caused by its action or the action of one of
the seventy nine other agents. This very low performance of
the global utility is likely the reason why agent-based cluster
ensembles have not been pursued until now.
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Figure 4: Results of Ensemble Methods with Artifi-
cial Data with Faulty Agents. Systems with agents
using D generally perform well when some of the
agents fail. Top curve shows performance when all
agents are working properly. Second curve shows
performance when 10% of the agents always choose
cluster 0 as their action. Third curve shows perfor-
mance when 50% of the agents always choose the
same random cluster as their action. Fourth curve
shows performance when 50% of the agents always
choose a different random action at every time step.

In addition to testing the agents under normal conditions,
we tested the case where some of the agents fail. In this
test three agents were used for every cluster to provide re-
dundancy. This redundancy was tested under three failure
scenarios. In the first scenario 50% of the agents were faulty.
These faulty agents (called “random agents” in the figures)
chose a random cluster at every time step. In the second
scenario 50% percent of the agents (called “fixed random
agents”) chose a random cluster at the beginning of a trial
and kept making the same choice throughout the trail. In
the final scenario 10% of the agents always chose the first
cluster (these are called “0” agents). The results shown in
Figure 4, reveal that agent-based cluster ensembles can per-
form well in a number of adverse conditions. Even when
half of the agents were faulty, the system could still perform
well. Note that the agent-based system in the first scenario
performed worse than the one in the second scenario, even
though the same number of agents were faulty. This can be
explained by the adaptivity of the agents. In the second sce-
nario the faulty agents always took the same wrong move, so
the working agents could adapt to overcome the adversity.
In the first scenario, the faulty agents simply added random
noise to the system, which could not be easily adapted to.
Despite the inherent failure tolerance of the multi-agent sys-
tem, there was still a possibility of catastrophic failure if too
many of the agents failed in the same way. While the sys-
tem was able to recover when 10% of the agents choose the
same wrong cluster, the performance drops to zero if 50%
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Figure 5: Results of Ensemble Methods on Artificial
Data. Eight clusterings are created by adding vari-
able amounts of noise to the original cluster labels.
The ensemble tries to recover the original labels
from the eight clusterings. Relative performance
of methods is consistent across noise levels (CSPA
performance is almost identical to greedy method,
but not shown to reduce clutter).

percent of the agents choose the same wrong cluster (not
shown in the graphs). This failure is caused by the voting
scheme, since when 50% percent of the agents vote for the
same cluster, that cluster will always win. In this case, the
final clustering will always have just one cluster.

The previous experiments were done with the noise pa-
rameter, B, used to generate the noisy clusterings from the
initial clustering, set to 0.4. To show that the relative perfor-
mance of all the methods was not dependent on this choice of
noise parameter, we tested the performance of the methods
on a wide range of values shown in Figure 5. The results
show that for a wide range of noise parameters that the
agent-based methods perform well, and the relative perfor-
mances of the other methods is about the same.

4.2 Pendig Data Set
The Pendig data set contained one thousand data points,

with each data point having sixteen features. Each data
point represented a processed handwritten digit. The data
points were clustered into ten clusters, with each cluster rep-
resenting a digit from ‘0’ to ‘9.’ While this data set is known
to have precisely ten clusters, the true clustering is subjec-
tive since some of the images could be ambiguous. From the
original Pendig dataset we produced ten different cluster-
ings (by coincidence, each with ten clusters) by partitioning
the data into ten data sets. Each point in the new data sets
contained four features sampled from the original sixteen.
Ten clusterings were then produced by clustering each of
the new data sets with METIS. Using these clusterings for
the ensemble, agents using the difference utility were able
to perform better than the best centralized graph-based al-
gorithm, MCLA (see Figure 6). Again the results show that
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Figure 6: Results of Ensemble Methods for the
Pendig Data Set. Agents using difference utility per-
form better than the best graph-based algorithm.
Even when up to 50% of the agents fail, the system
performs well.

agent-based cluster ensembles can perform well in a number
of adverse conditions. Even when half of the agents were
faulty, the system could still out-perform the graph-based
methods. Only in the case when half the agents choose ran-
dom actions at every time step, did the performance drop be-
low that of the MCLA. Though even in this case the agents
using the difference utility with 50% failure were able to per-
form better than agents using the global utility when there
are no failures.

4.3 Yahoo Data Set
In this experiment a processed version of the Yahoo! data

set was used. This data set has also been used in [17] and
[3]. The data set contained 2340 data points, with each
data point having 2903 features. Each data point repre-
sented a document and the features were a pruned set of
word frequencies contained in the document. The data set
was clustered into twenty clusters, based on which Yahoo!
news category they were originally placed in. Note that
both the correct number clusters and the true clusterings
were subjective for this data sets. More or less news cat-
egories could have been used, and many documents could
have been placed in different categories.

In the experiment we created twenty clusterings (coinci-
dentally, each clustering having twenty clusters) by splitting
the full data set into twenty separate data sets. Each new
data set contained all of the 2340 data points, but each data
point only had a 128 element subset of the original features.
Each new data set was then clustered using METIS, forming
twenty clusterings. These new clusterings were then used for
the ensemble in the experiment. The output of the ensemble
algorithm was then compared to the original Yahoo! clus-
tering using NMI. Figure 7 shows the results between an
agent-based method using Di as its utility, an agent-based
method using G as its utility and the best performing graph-
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Figure 7: Results of Ensemble Methods for the Ya-
hoo Data Set. Agents using difference utility slightly
under-perform the best graph-based algorithm, but
still perform adequately when up to 50% of the
agents fail.

based method, MCLA.
The results show that agents using the global utility were

unable to produce an adequate clustering. This is not sur-
prising since there were 400 agents in the system. In this
case, the learnabity of the global utility was very poor since
an agent cannot easily see the contribution of its action
on the global utility, amongst the 399 actions of the other
agents. In contrast the agents using Di were able to do much
better. While these agents were not able to do as well as the
MCLA algorithm 1, they did exhibit a high level of fault tol-
erance. When 10% of the agents were not working properly,
the system still managed to achieve nearly the same per-
formance as the fully operational system. Even when 50%
of the agents were taking random actions, agents using the
difference utility were still able to learn to compensate, and
achieve much better performance than the system using the
global utility.

5. DISCUSSION
Using the difference utility, the results show that agent-

based cluster ensembles can perform comparably to the best
existing cluster ensemble methods. In addition they are
able to achieve this level of performance with relatively lit-
tle computation as compared to simple greedy optimization
methods. Also agent-based method also allow the cluster
ensemble problem to be treated as a dynamic optimization
problem, significantly increasing the robustness of the sys-
tem. The agent-based cluster ensembles exhibit a high level

1Note that we could not generate the exact clusterings used
in the papers [16, 15], due to the randomness in the Metis al-
gorithm. Our results for MCLA and the agent methods were
based on a set of clusterings that turned out to be slightly
harder, therefore our results cannot be directly compared to
the results in this paper.



of fault tolerance and are able to retain high performance
even when 50% of the agents fail. This property allows them
to be used in domains that have a high component failure
rate, such as in space-based systems or domains with unre-
liable communication. In addition the agent-based cluster
ensembles have the flexibility to be stopped early in domains
where a fixed level of performance is needed. This ability
can save computational costs, even when the difficulty of the
ensemble problem is not known ahead of time.

The implementation presented in this paper assigned an
agent to a single cluster and the agent vote involved all the
data points in that cluster. However, this way of mapping
agents to data points is not necessary to the framework. De-
pending on the performance requirements one agent could be
assigned several clusters or multiple agent could be assigned
to different parts of the same cluster. Having alternative
agent to cluster mapping may be beneficial if the owners of
the clustering sources do not want to reveal their exact clus-
terings, but still want to collaborate with other data owners
to create unified clusterings.
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